

Tesla, Inc. 3500 Deer Creek Road Palo Alto, California, 94304

Product: Powerwall 3, Model #: 1707000-xx-y Registered Capacity: 3.68kW

Manufacturers Declaration of Conformity

Tesla, Inc. certify and declare under their sole responsibility that the above-referenced product(s), is in conformity with the following specifications applied:

G98 Issue 1 - Amendment 7

Engineering Recommendation G98 Issue 3 Oct 2022 Amendment 7 Requirements for the connection of Fully Type Tested Micro-generators (up to and including 16 A per phase) in parallel with public Low Voltage Distribution Networks on or after 27 April 2019

Products must be installed and operated with reference to the instructions in the Product Manual.

The following Notified Body; SGS Tecnos S.A. located at C/ Trespaderne, 29 - Edificio Barajas 1 28042 Madrid, Spain has issued a positive Statement of Opinion based on test report number 230419RECO01B_AM1.

Mehran Zamani

Staff Compliance Engineer

04/11/2024 (mm/dd/yyyy)

Date

Form C: Type Test Verification Report

All Micro-generators connected to the **DNO Distribution Network** shall be **Fully Type Tested**. This form is the **Manufacturer**'s declaration of compliance with the requirements of EREC G98.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA) Type Test Register.

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA Type Test Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the system reference), and this form does not need to be submitted.

Manufacture	er's reference	ce number	Powerwall	3 1707000-xx-y		
Micro-gener	Micro-generator technology		Grid-Connected Converter with Battery Storage			
Manufacturer name			Tesla, Inc.			
Address			3500 Deer Creek Road Palo Alto, California, 94304			
Tel	408-876-13	303		Fax		
E-mail	mzamani@	tesla.com		Web site	www.tesla.com	
		Connection (Option			
Registered use separate		3.68	kW single phase, single, split or three phase system			
more than or connection of	-		kW three p	hase		
			kW two phases in three phase system			
			kW two phases split phase system			
Energy stora capacity for I Storage dev	Electricity	13.5	kWh			

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above **Fully Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98.

Signed	001	On behalf of	Tesla, Inc.
	The state of the s		
	,		

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Operating Range: This test should be carried out as specified in A.1.2.10.

Test 1 Voltage = 85% of nominal (195.5 V)	Test results or	r chart to con	firm operatio	n	
requency = 47.0 Hz rower factor = 1 reriod of test 20 seconds	Voltage measured (p.u)	Frequency measured (Hz)	Active Power measured (p.u)	Time measured	Discon.
	0.850	47.00	0.844 (*)	47 s	☐ YES ☑ NO
Test 2 Voltage = 85% of nominal (195.5 V)	Test results of	r chart to con	firm operatio	n	
Frequency = 47.5 Hz Power factor = 1 Period of test 90 minutes	Voltage measured (p.u)	Frequency measured (Hz)	Active Power measured (p.u)	Time measured	Discon.
	0.851	47.50	0.847 (*)	>90 min	□ YES 図 NO
Test 3 Voltage = 110% of nominal (253 V).	Test results of	r chart to con	firm operatio	n	
Frequency = 51.5 Hz Power factor = 1 Period of test 90 minutes	Voltage measured (p.u)	Frequency measured (Hz)	Active Power measured (p.u)	Time measured	Discon.
	1.101	51.50	0.984	>93 min	☐ YES 図 NO

Test 4	Te	est results or	chart to	con	firm opera	tior	1		
Voltage = 110% of nominal (2no53 V). Frequency = 52.0 Hz Power factor = 1 Period of test 15 minutes		Voltage measured (p.u)	Frequen measure (Hz)		Active Power measure (p.u)	d	Tir meas >17	sured	Discon.
Test 5 Voltage = 100% of nominal (230 V).	Te	est results or	chart to	con	firm opera	tior	า		⊠ NO
Frequency = 50.0 Hz Power factor = 1 Period of test 90 minutes		Voltage measured (p.u)	Frequen measure (Hz)	_	Active Power measure (p.u)	d		me sured	Discon.
		1.002	50.00		0.981		>94	min	□ YES ☑ NO
Test 6 RoCoF withstand Confirm that the Micro-Generating Plant is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs ⁻⁸ as measured	Te	est results or	chart to d	l d	firm opera Ramp range esired 9.00 to	Fi Va (H	nal ilue Hz)	(Hz	mp z/s)
over a period of 500 ms.		Neg	ncy drift gative ncy drift	5	1.00 Hz 1.00 to 9.00 Hz		.00		03

^(*) The desired value of active power has not been reached due to limitations in the maximum current of the inverter during this under voltage operation.

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

(IIIVOITO	i comincolody of	711110X 712 7	1.2.0.1 (Oy110	monous).		
		Micro	o-generator	tested to E	3S EN 61000-3-2	
Micro-g	Micro-generator rating per phase (rpp)				kW	
harmoni phases.	nase Micro-gen ic measurement If the harmonic please replicate ase.	ts are identices are not ide	cal for all thre entical for eac	ch		
Harmo nic	At 45-58		100% of Ro			
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.033		0.041		1.080	
3	0.248		0.244		2.300	
4	0.013		0.012		0.430	
5	0.126		0.239		1.140	
6	0.013		0.014		0.300	
7	0.219		0.181		0.770	
8	0.026		0.014		0.230	
9	0.118		0.130		0.400	
10	0.022		0.014		0.184	
11	0.091		0.095		0.330	
12	0.013		0.012		0.153	
13	0.070		0.074		0.210	
14	0.017		0.012		0.131	
15	0.048		0.062		0.150	
16	0.018		0.012		0.115	
17	0.032		0.042		0.132	

¹ See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

18	0.013	0.013	0.102	
19	0.022	0.030	0.118	
20	0.012	0.013	0.092	
21	0.015	0.019	0.107	0.160
22	0.012	0.011	0.084	
23	0.016	0.018	0.098	0.147
24	0.013	0.012	0.077	
25	0.014	0.015	0.090	0.135
26	0.012	0.014	0.071	
27	0.014	0.015	0.083	0.124
28	0.012	0.013	0.066	
29	0.015	0.015	0.078	0.117
30	0.011	0.012	0.061	
31	0.015	0.014	0.073	0.109
32	0.011	0.011	0.058	
33	0.016	0.016	0.068	0.102
34	0.012	0.011	0.054	
35	0.016	0.016	0.064	0.096
36	0.011	0.011	0.051	
37	0.017	0.017	0.061	0.091
38	0.011	0.011	0.048	
39	0.018	0.020	0.058	0.087
40	0.011	0.012	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Additional comments:

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

The standard test impedance is 0.4 Ω for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and 0.24 Ω for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must

be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

Test start date	08/12/20)23		Test end date					
Test location		3500 Deer Creek Road Palo Alto, California, 94304							
	Starting ¹	1		Stopping	1		Running		
	d max	d c	d(t)	d max	d c	d(t)	P _{st}	P _{lt} 2 hours	
Measured Values at test impedance	0.46	0.35	0.00	0.46	0.35	0.00	0.07	0.07	
Normalised to standard impedance	1.02	0.78	0.00	1.02	0.78	0.00	0.16	0.16	
Normalised to required maximum impedance	<4%	<3.3%	<3.3%	<4%	<3.3%	<3.3%	<1.0	<0.65	
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	4%	3.3%	3.3%	1.0	0.65	

NOTE: According to the standard the maximum limit for d_{max} applied to equipment's which are automatically commutated more than twice a day is 6%. This inverter could be commutated automatically more than twice a day, so the limit applied is 6%.

Test Impedance	R	0.15	Ω	X	0.15	Ω
Standard Impedance	R	0.24 *	Ω	Х	0.15 * 0.25 ^	Ω
Maximum Impedance	R		Ω	Х		Ω

^{*}Applies to three phase and split single phase Micro-generators. Delete as appropriate.

Power quality – DC injection: This test should be carried out in accordance with A 1.3.4 as applicable.

[^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. Delete as appropriate.

⁽¹⁾ Ramp up/down of 10 seconds.

The % **DC** injection ("as % of rated AC current" below) is calculated as follows:

% **DC** injection = Recorded **DC** value in Amps / base current

where the base current is the **Registered Capacity** (W) / 230 V. The % **DC** injection should not be greater than 0.25%.

Test power level	20%	50%	75%	100%
Recorded DC value in Amps	0.028	0.038	0.022	0.030
as % of rated AC current	0.18	0.23	0.14	0.19
Limit	0.25%	0.25%	0.25%	0.25%

Power Quality – Power factor: This test shall be carried out in accordance with A.1.3.2 and A.2.3.2 at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within ±1.5% of the stated level during the test.

	216.2 V	230 V	253 V
Measured value	0.994	0.993	0.990
Power Factor Limit	>0.95	>0.95	>0.95

Protection – Frequency tests: These tests should be carried out in accordance with Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous). For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"	
	Frequency	Time delay	Frequency (Hz)	Time delay (s)	Frequency /time	Confirm no trip
U/F stage 1	47.5 Hz	20 s	47.45	20.133	47.7 Hz 30 s	Confirmed No Trip
U/F stage 2	47 Hz	0.5 s	46.95	0.616	47.2 Hz 19.5 s	Confirmed No Trip
					46.8 Hz 0.45 s	Confirmed No Trip
O/F stage 1	52 Hz	0.5 s	52.02	0.630	51.8 Hz 120.0 s	Confirmed No Trip
					52.2 Hz 0.45 s	Confirmed No Trip

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Voltage tests: These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage (p.u)	Time delay (s)	Voltage /time	Confirm no trip
U/V	184 V	2.5 s	0.791	2.545	188 V 5.0 s	Confirmed No Trip
					180 V 2.45 s	Confirmed No Trip
O/V stage 1	262.2 V	1.0 s	1.133	1.122	258.2 V 5.0 s	Confirmed No Trip
O/V stage 2	273.7 V	0.5 s	1.186	0.628	269.7 V 0.95 s	Confirmed No Trip
					277.7 V 0.45 s	Confirmed No Trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Loss of Mains test: For PV **Inverter**s shall be tested in accordance with BS EN 62116. Other **Micro-generator**s should be tested in accordance with A.2.2.4 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.2

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	N/A	N/A	N/A	N/A	N/A	N/A

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1 fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph2 fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3 fuse removed						

Note for technologies which have a substantial shut down time this can be added to the 0.5 s in establishing that the trip occurred in less than 0.5 s. Maximum shut down time could therefore be up to 1.0 s for these technologies.

Indicate additional shut down time included in above results.	ms

Additional comments:

NOT APPLICABLE, EQUIPMENT IS A CONVERTER.

² See the note in A.2.2.4 if the suggested loading levels are below the minimum stable operating level. If alternative loading levels are chosen, the level should be indicated on the test form and the reason for not testing at 10%/55% of **Registered Capacity** should be stated. The additional comments box at the end of the loss of mains test sheet can be used for this.

For **Inverters** tested to BS EN 62116 the following subset of tests should be recorded in the following table.

Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5 s ³	187 ms	199 ms	383 ms	262 ms	285 ms	493 ms

Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip under positive / negative vector shift.

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.0 Hz	+50 degrees	Confirmed No Trip
Negative Vector Shift	50.0 Hz	- 50 degrees	Confirmed No Trip

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip for the duration of the ramp up and ramp down test.

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	Confirmed No Trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	Confirmed No Trip

Limited Frequency Sensitive Mode – Overfrequency test: This test should be carried out in accordance with A.1.2.8. The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%. The measurement tolerances are contained in A.1.2.8.

Test sequence at Registered Capacity >80%	Measured Active Power Output (p.u)	Frequency (Hz)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	0.988	50.00	100%	-
Step b) 50.45 Hz ±0.05 Hz	0.977	50.45		-
Step c) 50.70 Hz ±0.10 Hz	0.928	50.70		19.6% Pn/Hz
Step d) 51.15 Hz ±0.05 Hz	0.840	51.15		19.6% Pn/Hz
Step e) 50.70 Hz ±0.10 Hz	0.926	50.70		19.1% Pn/Hz

³ If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form.

-

Step f) 50.45 Hz ±0.05 Hz		0.977	50.4	15			20.4% Pn/Hz
Step g) 50.00 Hz ±0.01 Hz		0.989	50.0	00			-
Test sequence at Registered Capacity 40% - 60%	Act	asured tive Power tput (p.u)	Freque (Hz)	ency	Primary Power	Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz		0.493	50.0	00	50%		-
Step b) 50.45 Hz ±0.05 Hz		0.481	50.4	1 5			-
Step c) 50.70 Hz ±0.10 Hz		0.432	50.7	70			19.6% Pn/Hz
Step d) 51.15 Hz ±0.05 Hz		0.348	51.	15			18.7% Pn/Hz
Step e) 50.70 Hz ±0.10 Hz		0.430	50.7	70			18.2% Pn/Hz
Step f) 50.45 Hz ±0.05 Hz		0.480	50.4	15			20.0% Pn/Hz
Step g) 50.00 Hz ±0.01 Hz		0.493	50.0	00			-
Power output with falling fre	eque	ncy test: This	test sho	ould be	e carried out in a	ccordance w	ith A.1.2.7.
Test sequence		Measured Power Outpu	Active It (p.u)	Frequ	uency (Hz)	Primary po (p.u)	ower source
Test a) 50 Hz ± 0.01 Hz		0.978	5		50.00 Hz	1.	000
Test b) Point between 49.5 and 49.6 Hz	Hz	0.979			49.55 Hz	1.	000
Test c) Point between 47.5 and 47.6 Hz	Hz	Hz 0.979			47.55 Hz	0.	960
NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes							

Re-connection timer.

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the **Micro-generating Plant** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

Time delay setting	Measured delay		Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 2.				
20	20.20		At 266.2 V	At 180.0 V	At 47.4 Hz	At 52.1 Hz	
Confirmation that the Microgenerator does not re-connect.		Confirmed No reconnection	Confirmed No reconnection	Confirmed No reconnection	Confirmed No reconnection		

Fault level contribution: These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous). Please complete each entry, even if the fault contribution is zero.

For machines with electro-magnet	For Inverter output				
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	İρ	N/A	20 ms	181.1	30.8
Initial Value of aperiodic current	Α	N/A	100 ms	5.1	10.3
Initial symmetrical short-circuit current*	I _k	N/A	250 ms	1.7	3.4
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500 ms	1.4	2.9
Reactance/Resistance Ratio of source*	X/ _R	N/A	Time to trip	0.849	In seconds

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

^{*} Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Yes
Yes
NA
NA
1

Cyber security

Confirm that the **Manufacturer** or **Installer** of the **Micro-generator** has provided a statement describing how the **Micro-generator** has been designed to comply with cyber security requirements, as detailed in 9.7.

Yes

Additional comments

- Logic Interface (input port) switch (4.5V_{dc} Signal).
- Manufacturer has provided the following statement declaration for cybersecurity compliance.

The Tesla Energy Cybersecurity Program is modelled after the NISTIR 7628 framework, which itself is modelled after the following publications:

NIST 800-53, Revision 3, Recommended Security Controls for Federal Information Systems and Organizations, August 2009

NERC CIP 002, 003-009, Version 5

Catalog of Control Systems Security: Recommendations for Standards Developers, Department of Homeland Security, March 2010

ISA99 / IEC62443